Min and Max in Python - HackerRank Solution
Problem :
Min
The tool min returns the minimum value along a given axis.
import numpy my_array = numpy.array([[2, 5], [3, 7], [1, 3], [4, 0]]) print numpy.min(my_array, axis = 0) #Output : [1 0] print numpy.min(my_array, axis = 1) #Output : [2 3 1 0] print numpy.min(my_array, axis = None) #Output : 0 print numpy.min(my_array) #Output : 0
By default, the axis value is None. Therefore, it finds the minimum over all
the dimensions of the input array.
Max
The tool max returns the maximum value along a given axis.
import numpy my_array = numpy.array([[2, 5], [3, 7], [1, 3], [4, 0]]) print numpy.max(my_array, axis = 0) #Output : [4 7] print numpy.max(my_array, axis = 1) #Output : [5 7 3 4] print numpy.max(my_array, axis = None) #Output : 7 print numpy.max(my_array) #Output : 7
By default, the axis value is None. Therefore, it finds the maximum over all
the dimensions of the input array.
Task :
You are given a 2-D array with dimensions NXM.
Your task is to perform the min function over axis 1 and then find the max of
that.
Input Format :
The first line of input contains the space separated values of N and M.
The next N lines contains M space separated integers.
Output Format :
Compute the min along axis 1 and then print the max of that result.
Sample Input :
4 2 2 5 3 7 1 3 4 0
Sample Output :
3
Explanation :
The min along axis 1 = [2, 3, 1, 0]
The max of [2, 3, 1, 0]= 3
The max of [2, 3, 1, 0]= 3
Solution :
1 2 3 4 5 6 7 8 9 | # Min and Max in Python - Hacker Rank Solution # Python 3 # Min and Max in Python - Hacker Rank Solution START import numpy N, M = map(int, input().split()) storage = numpy.array([input().split() for _ in range(N)],int) print(numpy.max(numpy.min(storage, axis=1), axis=0)) # Min and Max in Python - Hacker Rank Solution END |
Disclaimer :-
the above hole problem statement is given by hackerrank.com but the solution is generated by the codeworld19 authority if any of the query regarding this post or website fill the following contact form thank you.