Linear Algebra in Python - HackerRank Solution
Problem :
The NumPy module also comes with a number of built-in routines for linear
algebra calculations. These can be found in the sub-module linalg.
print numpy.linalg.det([[1 , 2], [2, 1]]) #Output : -3.0
vals, vecs = numpy.linalg.eig([[1 , 2], [2, 1]]) print vals #Output : [ 3. -1.] print vecs #Output : [[ 0.70710678 -0.70710678] # [ 0.70710678 0.70710678]]
The linalg.inv tool computes the (multiplicative) inverse of a matrix.
print numpy.linalg.inv([[1 , 2], [2, 1]]) #Output : [[-0.33333333 0.66666667] # [ 0.66666667 -0.33333333]]
Other routines can be found
here
Task :
You are given a square matrix A with dimensions NXN. Your task is to find the
determinant. Note: Round the answer to 2 places after the decimal.
Input Format :
The first line contains the integer N.
The next N lines contains the N space separated elements of array A.
The next N lines contains the N space separated elements of array A.
Output Format :
Print the determinant of A.
Sample Input :
2 1.1 1.1 1.1 1.1
Sample Output :
0.0
Solution :
1 2 3 4 5 6 7 8 | # Linear Algebra in Python - Hacker Rank Solution # Python 3 # Linear Algebra in Python - Hacker Rank Solution START import numpy N = int(input()) A = numpy.array([input().split() for _ in range(N)], float) print(round(numpy.linalg.det(A),2)) # Linear Algebra in Python - Hacker Rank Solution END |
Disclaimer :-
the above hole problem statement is given by hackerrank.com but the solution is generated by the codeworld19 authority if any of the query regarding this post or website fill the following contact form thank you.