Linear Algebra in Python - HackerRank Solution

Linear Algebra in Python - HackerRank Solution
 


Problem :

 
The NumPy module also comes with a number of built-in routines for linear algebra calculations. These can be found in the sub-module linalg.
 
The linalg.det tool computes the determinant of an array.
print numpy.linalg.det([[1 , 2], [2, 1]])       #Output : -3.0

The linalg.eig computes the eigenvalues and right eigenvectors of a square array.
vals, vecs = numpy.linalg.eig([[1 , 2], [2, 1]])
print vals                                      #Output : [ 3. -1.]
print vecs                                      #Output : [[ 0.70710678 -0.70710678]
                                                #          [ 0.70710678  0.70710678]]

The linalg.inv tool computes the (multiplicative) inverse of a matrix.
print numpy.linalg.inv([[1 , 2], [2, 1]])       #Output : [[-0.33333333  0.66666667]
                                                #          [ 0.66666667 -0.33333333]]
 
Other routines can be found here 
 

Task :

You are given a square matrix A with dimensions NXN. Your task is to find the determinant. Note: Round the answer to 2 places after the decimal.



Input Format :

The first line contains the integer N.
The next N lines contains the N space separated elements of array A.
 

Output Format :

Print the determinant of A.



Sample Input :

2
1.1 1.1
1.1 1.1
 

Sample Output :

0.0
 


Solution :

 
1
2
3
4
5
6
7
8
# Linear Algebra in Python - Hacker Rank Solution
# Python 3
# Linear Algebra in Python - Hacker Rank Solution START
import numpy
N = int(input())
A = numpy.array([input().split() for _ in range(N)], float)
print(round(numpy.linalg.det(A),2))
# Linear Algebra in Python - Hacker Rank Solution END
 




Disclaimer :-
the above hole problem statement is given by hackerrank.com but the solution is generated by the codeworld19 authority if any of the query regarding this post or website fill the following contact form thank you.

Next Post Previous Post
No Comment
Add Comment
comment url